Evaluate
krisi.evaluate.compare
compare
compare(scorecards: List[ScoreCard], metric_keys: Optional[List[str]] = None, sort_by: Optional[str] = None, dataframe: bool = True) -> Union[pd.DataFrame, str]
Creates a table where each column is a metric and each row is a scorecard and its corresponding results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scorecards |
List[ScoreCard]
|
ScoreCards to compare. |
required |
metric_keys |
Optional[List[str]]
|
List of metrics to display. If not set it will return all
evaluated metrics on the first scorecard.
Sorts the results by the first element of this list if |
None
|
sort_by |
Optional[str]
|
|
None
|
dataframe |
bool
|
Whether it should return a |
True
|
Returns:
Type | Description |
---|---|
Union[DataFrame, str]
|
A comparison table, either in |
krisi.evaluate.score
score
score(y: Targets, predictions: Predictions, probabilities: Optional[Probabilities] = None, sample_weight: Optional[Weights] = None, model_name: Optional[str] = None, dataset_name: Optional[str] = None, project_name: Optional[str] = None, default_metrics: Optional[Union[List[Metric], Metric]] = None, custom_metrics: Optional[Union[List[Metric], Metric]] = None, dataset_type: Optional[Union[DatasetType, str]] = None, sample_type: Union[str, SampleTypes] = SampleTypes.outofsample, calculation: Union[Calculation, str] = Calculation.single, rolling_args: Optional[Dict[str, Any]] = None, raise_exceptions: bool = False, benchmark_models: Optional[Union[Model, List[Model]]] = None, num_benchmark_iter: int = 100, **kwargs) -> ScoreCard
Creates a ScoreCard based on the passed in arguments, evaluates and then returns the ScoreCard.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y |
Targets
|
True Targets to which the metrics are evaluated to. |
required |
predictions |
Predictions
|
The single point predictions to which the metrics are evaluated to. |
required |
model_name |
Optional[str]
|
The name of the model that the predictions were generated by. Used for identifying scorecards. |
None
|
dataset_name |
Optional[str]
|
The name of the dataset from which the |
None
|
project_name |
Optional[str]
|
The name of the project. Used for reporting and saving to a directory (eg.: multiple scorecards) |
None
|
default_metrics |
Optional[Union[List[Metric], Metric]]
|
Default metrics that get evaluated. See |
None
|
custom_metrics |
Optional[Union[List[Metric], Metric]]
|
Custom metrics that get evaluated. If specified it will evaluate these after |
None
|
dataset_type |
Optional[Union[DatasetType, str]]
|
Whether the task was a binar/multi-label classifiction of regression. If set to |
None
|
sample_type |
Union[str, SampleTypes]
|
Whether we should evaluate it on insample or out of sample.
|
outofsample
|
calculation |
Union[Calculation, str]
|
Whether it should evaluate
|
single
|
rolling_args |
Dict[str, Any]
|
Arguments to be passed onto
|
None
|
Returns:
Type | Description |
---|---|
ScoreCard
|
The ScoreCard Evaluated |
Raises:
Type | Description |
---|---|
ValueError
|
If Calculation type is incorrectly specified. |