Note
Click here to download the full example code or to run this example in your browser via Binder
Adding Date/Time Features
# mkdocs_gallery_thumbnail_path = 'images/example_thumnail.png'
from sklearn.ensemble import RandomForestRegressor
from fold.loop import train_evaluate
from fold.splitters import ExpandingWindowSplitter
from fold.transformations import AddDateTimeFeatures, AddHolidayFeatures
from fold.utils.dataset import get_preprocessed_dataset
X, y = get_preprocessed_dataset(
"weather/historical_hourly_la", target_col="temperature", shorten=1000
)
splitter = ExpandingWindowSplitter(initial_train_window=0.2, step=0.1)
pipeline = [
AddDateTimeFeatures(["hour", "day_of_week"]),
AddHolidayFeatures(["US"]),
RandomForestRegressor(),
]
scorecard, prediction, trained_pipelines = train_evaluate(pipeline, X, y, splitter)
Total running time of the script: ( 0 minutes 0.000 seconds)
Download Python source code: date.py